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1. Introduction

The discovery of integrable structures in the context of the AdS/CFT correspondence [1]

has sparked many new insights and developments in this field. It was first noted that

the operator spectrum of N = 4 super Yang-Mills theory can be linked to (integrable)

spin chains [2]. The classical string sigma model on AdS5 × S5 was also shown to be

integrable [3]. Although a complete proof of integrability of the spin chain associated to

planar N = 4 super Yang-Mills theory and of its string dual is still missing, there is a lot

of inspiring evidence that integrability is indeed preserved. Assuming integrability to hold

has many important consequences. For example, the set of particle momenta is conserved

and every scattering process factorizes into a sequence of two-body interactions. In other

words, all the scattering information is encrypted in the two-body S-matrix.

As in many physical theories, symmetry algebras also play a crucial role here. The

centrally extended su(2|2) superalgebra has been shown to govern the asymptotic spectrum

of the spin chain associated to planar N = 4 super Yang-Mills theory at higher loops [4, 5].

The very same algebra also emerges from string theory [6] as a symmetry algebra of the

light-cone Hamiltonian [7, 8]. The requirement on the S-matrix to be invariant under the

centrally extended su(2|2) algebra fixes it uniquely up to an overall phase factor [5] and

a choice of the representation basis [9]. With a proper choice of the scattering basis, the

S-matrix exhibits most of the expected properties for a massive two-dimensional integrable

field theory, including unitarity and crossing symmetry. It also obeys the Yang-Baxter

equation [9].
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The S-matrix approach [10, 11] was first developed in the spin chain framework of

perturbative gauge theory. It allowed one to conjecture the corresponding “all-loop” Bethe

equations describing the gauge theory asymptotic spectrum [5, 12]. On the string side,

based on the knowledge of the classical finite-gap solutions [13], a Bethe ansatz for the

su(2) sector of the string sigma model was proposed [14]. The above mentioned non-

analytic, overall (dressing) phase constitutes an important feature of the string S-matrix.

It has been a subject of intensive research, see e.g. [15 – 18]. Most importantly, by com-

bining its expansion in terms of local conserved charges with the requirement of crossing

symmetry [19], one can find physically interesting solutions [15, 20], which nicely incorpo-

rate all available string and gauge theory data. The algebraic and the coordinate Bethe

ansätze based on the string S-matrix have also been studied in [21, 22].

The study of the quantum/classical scattering matrices and their symmetries is also

important for understanding finite size effects. Away from the infinite volume(charge) limit,

wrapping interactions come into play and preclude the use of asymptotic Bethe equations.

So far there are two attempts to deal with this problem. The first one consists in direct

computation of finite-size corrections to the giant magnon [23] (or bound state) disper-

sion relation by using the sigma-model/algebraic curve approach [24 – 27]. Alternatively,

these corrections can be obtained by using Lüscher’s perturbative approach [28 – 31]. The

second way [32] makes use of the thermodynamic Bethe ansatz [33]. One can define a

mirror model [32] for which the finite size effects in the original theory are traded for finite

temperature effects in the infinite volume. Both the Lüscher and the TBA approaches rely

on the knowledge of the corresponding scattering matrices.

The two-body S-matrix that plays a pivotal role in the whole story actually has an

even larger symmetry algebra1 of Yangian type [34, 35]. Since Yangians have a number of

useful properties, in particular, at the level of representation theory [36, 37], appearance of

Yangian symmetry in the string context is quite a welcome feature. As a matter of fact, the

existence of Yangian symmetry gives hope of constructing the universal R-matrix. Upon

specifying suitable representations, this R-matrix would then reproduce various scattering

processes; in particular, those involving the bound states.

At present, the existence of the universal R-matrix for the string sigma model is an

open problem. On the other hand, there are two proposals for the classical r-matrix [38, 39],

which might arise in the semi-classical limit of the yet to be found universal quantum R-

matrix. The second proposal [39] was shown to arise from the canonical r-matrix of the

exceptional algebra d(2, 1; ǫ) which is closely related to the su(2|2) algebra [40]. From the

string theory point of view, the classical r-matrix corresponds to the two-body S-matrix in

the near plane-wave limit.

In addition to fundamental particles, the string sigma-model also contains bound

states [41]. They fall into short (atypical) symmetric representations of the centrally ex-

tended su(2|2) algebra [41 – 43]. In a recent work [44] the S-matrices SAB and SBB which

describe the scattering processes involving the fundamental multiplet (A) and the two-

particle bound state multiplet (B) have been found. It appears that the extended su(2|2)

1See [9] for an earlier discussion of higher symmetries of the fundamental S-matrix.
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symmetry together with the Yang-Baxter equations is sufficient to completely determine

these S-matrices, up to an overall phase; the overall phase can be chosen to satisfy the

additional requirement of crossing symmetry.

The aim of the present paper is to study the Yangian symmetry of the bound state S-

matrices from [44] and also to compare them to the proposed classical r-matrix from [39] in

the near plane-wave limit. We find that the S-matrices indeed respect Yangian symmetry.

Moreover, as an alternative to the Yang-Baxter equation, Yangian symmetry completely

determines the S-matrix SBB up to a phase. Finally, upon comparing the proposed clas-

sical r-matrix to the bound state S-matrices in the near plane-wave limit, we find perfect

agreement.

The paper is organized as follows. First, we recall the structure of the centrally ex-

tended su(2|2) and the structure of its Yangian. Subsequently, we will discuss the formu-

lation of the bound state representation in terms of differential operators that we used for

our computations. In this language we specify coproducts of the su(2|2) symmetry gen-

erators and of the Yangian generators and show that the bound state S-matrices respect

Yangian symmetry. Last, we discuss the classical r matrix and compare it to the bound

state S-matrices in the near plane-wave limit.

2. Centrally extended su(2|2) and Yangians

The algebra which plays a key role in the entire discussion is centrally extended su(2|2),

which we will denote by h. It is the symmetry algebra of the light-cone Hamiltonian of

the AdS5 × S5 superstring and it also appears as the symmetry algebra of the spin chain

connected to N = 4 SYM. The algebra consists of bosonic generators R, L, supersymmetry

generators Q, G and central elements H, C, C†. The non-trivial commutation relations

between the generators are given by

[L b
a , Jc] = δb

cJa −
1

2
δb
aJc [R β

α , Jγ ] = δβ
γ Jα −

1

2
δβ
αJγ

[L b
a , Jc] = −δc

aJb +
1

2
δb
aJc [R β

α , Jγ ] = −δγ
αJβ +

1

2
δβ
αJγ (2.1)

{Q a
α , Q b

β } = ǫαβǫabC {G α
a , G β

b } = ǫαβǫabC
†

{Qa
α, Gβ

b } = δa
b R β

α + δβ
αL a

b +
1

2
δa
b δβ

αH.

The first two lines show how the indices of an arbitrary generator with relevant indices

transform. We will denote the eigenvalues of the central charges by H,C,C†. The charge H

is Hermitian and the charges C,C† are conjugate as well as the generators Q, G, i.e. G = Q†.

Let us now turn our attention to the (double) Yangian of centrally extended su(2|2).

We will briefly give the most relevant definitions and results, and refer to [36, 37] for more

detailed accounts on Yangians in general and to [34, 39] for more details on the Yangian

structure of h.

Double Yangian, generalities. The double Yangian DY (g) of a (simple) Lie algebra

g is a deformation of the universal enveloping algebra U(g[u, u−1]) of the loop algebra

– 3 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
5

g[u, u−1]. Let us denote the deformation parameter by ~. The Yangian is generated by

level n generators JA
n , n ∈ Z that satisfy the commutation relations

[

JA
m, JB

n

]

= FAB
C JC

m+n + O(~), (2.2)

where FAB
C are the structure constants of g. The level-0 generators JA

0 span the Lie-algebra.

The coproduct is given by

∆(JA
n ) = JA

n ⊗ 1 + 1 ⊗ JA
n +

~

2

n−1
∑

m=0

FA
BCJB

n−1−m ⊗ JC
m. (2.3)

Where the indices on the structure constants were lowered with the Cartan-Killing matrix.

The Yangian can be supplied with the structure of a quasi-cocommutative Hopf-algebra

if there is an R-matrix, R ∈ DY (g) ⊗ DY (g) such that

∆op(JA
n )R = R∆(JA

n ), (2.4)

with ∆op the opposite coproduct, ∆op = P∆, where P is the (graded) permutation op-

erator. For conventional Yangians this universal R-matrix exists and can be explicitly

constructed with the help of the Cartan-Killing matrix.

An important representation of the Yangian is the evaluation representation. This

representation consists of states |u〉, with action JA
n |u〉 = unJA

0 |u〉. Hence, upon choosing a

representation of the Lie algebra we obtain a representation of the Yangian. The coproduct

becomes particulary easy in this representation. Let it act on the state |u1〉 ⊗ |u2〉, then it

is of the form:

∆(JA
n ) ≈

un−1
1 − un−1

2

u−1
1 − u−1

2

∆(JA
0 ) +

un
1 − un

2

u1 − u2
∆(JA

1 ). (2.5)

This means that if one wants to check invariance of an R-matrix under Yangian symmetry

in the evaluation representation it is enough to check this for JA
0 , JA

1 .

The parameter ~ is viewed as a quantum parameter and the Yangian as a quantum

deformation of the enveloping algebra. We can consider the semi-classical limit by working

consistently up to order ~. In this limit, the universal R-matrix expands as:

R = 1 + ~r + O(~2). (2.6)

The operator r is called the classical r-matrix.

Double Yangian, centrally extended su(2|2). Unfortunately h is not simple and

hence the above discussed methods cannot be straightforwardly applied.

For the coproduct one needs to introduce a non-trivial braiding [34, 45, 46],

∆(JA
n ) = JA

n ⊗ 1 + U [A] ⊗ JA
n +

~

2

n−1
∑

m=0

FA
BCJB

n−1−mU [C] ⊗ JC
m + O(~2)

∆(U) = U ⊗ U , (2.7)
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for some Abelian generator U and “braid charges”:

[C†] = −2, [G] = −1, [L] = [R] = [H] = 0, [Q] = 1, [C] = 2. (2.8)

In section 3.2 we will use another formulation of the coproduct which avoids the explicit use

of the braiding factors. In order to make supply the Yangian with a quasi-cocommutative

structure, it was shown that the central charges C, C† need to be identified with the braiding

factor U and H in the following way [34, 46]:

C0 ∼ g(1 − U2) C
†
0 ∼ g(1 − U−2)

C1 ∼ H(1 + U2) C
†
1 ∼ −H(1 + U−2). (2.9)

In the evaluation representation we can use this to express the evaluation parameter u in

terms of the eigenvalues of H and the braiding operator:

JA
n = (iu)nJA

0 , iu ∼ H
1 + U2

1 − U2
(2.10)

This is quite different from the standard case, where the evaluation parameter is unrelated

to the algebra. The adjusted notion of coproduct raises the question whether a universal

R-matrix can still be found in order to make the Yangian quasi-cocommutative. One could

hope that, just as in the simple case, it could be constructed by means of the Cartan-Killing

matrix. However, for h this appears to be singular and hence the standard construction

breaks down. Nevertheless, for the fundamental evaluation represenation of h, the R-matrix

has been found as a scattering matrix [5, 9] and it indeed respects Yangian symmetry [34].

Although an expression for the universal R-matrix is currently lacking, there have been

proposals for the classical r-matrix [38, 39]. We will focus on the proposal [39] in section 4.

3. Representation with differential operators and symmetry invariance

The representations that describe M -particle bound states are 4M -dimensional and be-

cause of this, the sizes of the involved matrices quickly get out of hand. To avoid doing

computations with unwieldy matrices it is useful to put this representation in the formalism

of differential operators. The encountered totally symmetric representation of M -particle

bound states can be identified with a 4M -dimensional graded vector space of monomials

of degree M and the different generators can be represented by corresponding differential

operators [44].

3.1 Formalism and bound state representations

Consider the vector space of analytic functions of two bosonic variables wa and two

fermionic variables θα. Since we are dealing with analytic functions we can expand any

such function Φ(w, θ):

Φ(w, θ) =
∞
∑

M=0

ΦM (w, θ),

ΦM = φa1...aM wa1
. . . waM

+ φa1...aM−1αwa1
. . . waM−1

θα

+φa1...aM−2αβwa1
. . . waM−2

θαθβ. (3.1)
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The representation of centrally extended su(2|2), that describes M -particle bound states

of the light-cone string theory has dimension 4M . It is realized on a graded vector space

with basis |ea1...aM
〉, |ea1 ...aM−1α〉, |ea1 ...aM−2αβ〉, where ai are bosonic indices and α, β are

fermionic indices and each of the basis vectors is totally symmetric in the bosonic in-

dices and anti-symmetric in the fermionic indices [41, 42, 44]. In terms of the above

analytic functions, the basis vectors of the totally symmetric representation can evidently

be identified |ea1...aM
〉 ↔ wa1

. . . waM
, |ea1...aM−1α〉 ↔ wa1

. . . waM−1
θα and |ea1...aM−1αβ〉 ↔

wa1
. . . waM−2

θαθβ respectively. In other words, we find the atypical totally symmetric

representation describing M -particle bound states when we restrict to terms ΦM .

In this representation the generators of h can be written in differential operator form

in the following way

L b
a = wa

∂

∂wb

−
1

2
δb
awc

∂

∂wc
, R β

α = θα
∂

∂θβ

−
1

2
δβ
αθγ

∂

∂θγ
,

Q a
α = aθα

∂

∂wa
+ bǫabǫαβwb

∂

∂θβ

, G α
a = dwa

∂

∂θα
+ cǫabǫ

αβθβ
∂

∂wb

(3.2)

and the central charges are

C = ab

(

wa
∂

∂wa
+ θα

∂

∂θα

)

C† = cd

(

wa
∂

∂wa
+ θα

∂

∂θα

)

H = (ad + bc)

(

wa
∂

∂wa
+ θα

∂

∂θα

)

. (3.3)

To form a representations, the parameters a, b, c, d satisfy the condition ad − bc = 1. The

central charges become M dependent:

H = M(ad + bc), C = Mab, C† = Mcd. (3.4)

In what follows we will also need an additional operator2

Σ =
1

2

1

ad + bc

(

wa
∂

∂wa
− θa

∂

∂θα

)

. (3.5)

This operator corresponds (up to the prefactor) to the grading matrix Σ of [9] and it

distinguishes the superfield components with different numbers of fermions. On bound

state representations Σ has the following commutation relations with the algebra generators

[Σ, Qa
β ] = −Qa

β + 2CH−1ǫβγǫadG
γ
d

[Σ, Gα
b] = Gα

b − 2C†H−1ǫαγǫbdQd
γ (3.6)

[Σ, La
b] = [Σ, Rα

β] = [Σ, H] = 0.

We will also introduce the following quadratic operator

T = R α
β R β

α − L a
b L b

a + Gα
aQ a

α − Q a
α G α

a . (3.7)

2We are grateful to G. Arutyunov for suggesting this.
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The operators Σ and T can be used to construct the Casimir operator C of the u(2|2) algebra

C = ΣH − T (3.8)

which in the M -particle bound state representation has the following eigenvalue

C|M〉 = M(M − 1)|M〉 . (3.9)

Further, we introduce the parameterization for a, b, c, d in terms of the particle mo-

mentum and the coupling g:

a =

√

g

2M
η b =

√

g

2M

iζ

η

(

x+

x−
− 1

)

c = −

√

g

2M

η

ζx+
d =

√

g

2M

x+

iη

(

1 −
x−

x+

)

, (3.10)

where the parameters x± satisfy

x+ +
1

x+
− x− −

1

x−
=

2Mi

g
,

x+

x−
= eip. (3.11)

Finally, the eigenvalue of the braid operator is found to be U =
√

x+

x− and the parameter

of the evaluation representation is identified with uj = x+
j + 1

x+

j

−
iMj

g
. The fundamental

representation corresponds to taking M = 1.

The totally symmetric representation is now completely fixed by specifying x±, g, η,M .

The factor of η reflects a freedom in choosing basis vectors. However, as found in [32], it

appears that string theory selects a particular choice of η, ζ:

η = eiξe
i
4
p
√

ix− − ix+, ζ = e2iξ . (3.12)

As a consequence of this choice, the S-matrix satisfies the normal, untwisted Yang-Baxter

equation and is, in fact, a symmetric operator. Adopting this choice also has some conse-

quences for the braiding factor in the coproduct. This will be discussed in the next sections.

3.2 Tensor products, coproducts and symmetries

When analyzing R-matrices or S-matrices one needs to consider (graded) tensor products

of representations. In the context of differential operators in a superspace, this is easily

realized by considering the product of two irreducible superfields ΦM1
(wa, θα)ΦM2

(ua, ϑα)

depending on different sets of coordinates.

Coproduct of the algebra generators. Let us now consider the coproducts of the

symmetry generators of centrally extended su(2|2). As discussed in [9], the S-matrix is a

map between the following representations:

S : VM1
(p1, e

ip2) ⊗ VM2
(p2, 1) −→ VM1

(p1, 1) ⊗ VM2
(p2, e

ip1), (3.13)
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where VMi
(pi, e

2iξ) is the Mi-bound state representation with parameters ai, bi, ci, di with

the explicit choice of ζ = e2iξ. Taking into account the above parameters of the different

representations, we see that when checking the relation

S ∆(JA
0 ) = ∆op(JA

0 ) S, (3.14)

all the explicit braiding factors drop out and we get

∆(JA
0 ) = JA

1;0 + JA
2;0. (3.15)

Here ∆op(JA
i ) acts on VM1

(p1, 1)⊗VM2
(p2, e

ip1) and ∆(JA
i ) acts on VM1

(p1, e
ip2)⊗VM2

(p2, 1),

with the appropriate coefficients a, b, c, d. We will give explicit expressions in the next sec-

tion for each of these coefficients. In the above formula JA
i;0 is the operator JA

0 acting in

the i-th space.

In [5, 9] the requirement of invariance under h, in the sense of commuting with (3.15),

was found to be sufficient to fix the fundamental S-matrix, denoted by SAA, up to a

phase factor. This procedure has also been carried out for the two-particle bound states

representations [44]. This, together with Yang-Baxter, was again enough to fix the involved

S-matrices up to a phase factor. For the explicit form of these S-matrices, denoted by SAB

and SBB , we refer to [44].

We will spell out the phase factors, since they will play a role when comparing the

S-matrices to the classical r-matrix. For SAA the corresponding phase factor has been

studied quite intensively. This factor allows one to derive the phase factors for SAB and

SBB by applying the fusion procedure [41, 48, 49].3 Define the function

G(n) :=
u1 − u2 + in

g

u1 − u2 −
in
g

, (3.16)

where uj = x+
j + 1

x+

j

−
iMj

g
. The phase factors of the different matrices that follow from

fusion and crossing symmetry are:

SAA
0 =

√

G(0)G(2)

√

√

√

√

x−
1;1x

+
2;1

x+
1;1x

−
2;1

σ(x1;1, x1;1)

SAB
0 =

√

G(1)G(3)
x−

1;2

x+
1;2

√

√

√

√

x+
2;2

x−
2;2

σ(x1;1, x2;2) (3.17)

SBB
0 = G(2)

√

G(4)
x−

1;2x
+
2;2

x+
1;2x

−
2;2

σ(x1;2, x2;2),

where σ(p, q) = eiθ(p,q) is the dressing phase. The canonical S-matrices, completed with

the above phases respect crossing symmetry [44].

3The fusion procedure for rational S/R-matrices based on gl(m|n) has recently been worked out [47].
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Yangian symmetry of the S-matrices. It appears that the coproduct of the Yangian

generators can be written in the standard form. Let us denote the first Yangian generator

of an operator J by Ĵ. All the braiding factors entering in the coproduct (2.7) never explic-

itly appear in the operator formalism discussed above. The coproduct in the differential

operator form is now given by

∆(L̂a
b) = L̂ a

1;b + L̂ a
2;b +

1

2
L c

1;bL
a

2;c −
1

2
L a

1;cL
c

2;b −
1

2
G

γ
1;bQ

a
2;γ −

1

2
Q a

1;γG
γ

2;b

+
1

4
δa
b G

γ
1;cQ

c
2;γ +

1

4
δa
b Q c

1;γG
γ

2;c

∆(R̂α
β) = R̂ α

1;β + R̂ α
2;β −

1

2
R

γ
1;βR α

2;γ +
1

2
R α

1;γR
γ

2;β +
1

2
G α

1;cQ
c

2;β +
1

2
Q c

1;βG α
2;c

−
1

4
δα
β G

γ
1;cQ

c
2;γ −

1

4
δα
β Q c

1;γG
γ

2;c (3.18)

∆(Q̂a
β) = Q̂ a

1;β + Q̂ a
2;β −

1

2
R

γ
1;βQ a

2;γ +
1

2
Q a

1;γR
γ

2;β −
1

2
L a

1;cQ
c

2;β +
1

2
Q c

1;βL a
2;c

−
1

4
H1Q

a
2;β +

1

4
Q a

1;βH2 +
1

2
ǫβγǫadC1G

γ
2;d −

1

2
ǫβγǫadG

γ
1;dC2

∆(Ĝα
b) = Ĝ α

1;b + Ĝ α
2;b +

1

2
L c

1;bG
α

2;c −
1

2
G α

1;cL
c

2;b +
1

2
R α

1;γG
γ

2;b −
1

2
G

γ
1;bR

α
2;γ

+
1

4
H1G

α
2;b −

1

4
G α

1;bH2 −
1

2
ǫbcǫ

αγC
†
1Q

c
2;γ +

1

2
ǫbcǫ

αγQ c
1;γC

†
2

and for the central charges:

∆(Ĥ) = Ĥ1 + Ĥ2 +
1

2
C1C

†
2 −

1

2
C
†
1C2

∆(Ĉ) = Ĉ1 + Ĉ2 +
1

2
H1C2 −

1

2
C1H2 (3.19)

∆(Ĉ†) = Ĉ
†
1 + Ĉ

†
2 +

1

2
H1C

†
2 −

1

2
C
†
1H2.

The product is ordered, e.g. Q1Q2 means first apply Q2, then Q1. Also, in the evaluation

representation we identify Ĵ = g
2i

uJ. As stressed in the previous section, ∆op acts on

representations with different parameters ζ. For completeness we will explicitly give the

parameters a, b, c, d for the involved representations. The coefficients for ∆(J) are given by:

a1 =

√

g

2M1
η1 b1 = −ieip2

√

g

2M1

1

η1

(

x+
1

x−
1

− 1

)

c1 = −e−ip2

√

g

2M1

η1

x+
1

d1 = i

√

g

2M1

x+
1

η1

(

x−
1

x+
1

− 1

)

η1 = ei
p1
4 ei

p2
2

√

ix−
1 − ix+

1 (3.20)

a2 =

√

g

2M2
η2 b2 = −i

√

g

2M2

1

η2

(

x+
2

x−
2

− 1

)

c2 = −

√

g

2M2

η2

x+
2

d2 = i

√

g

2M2

x+
2

iη2

(

x−
2

x+
2

− 1

)

η2 = ei
p2
4

√

ix−
2 − ix+

2
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The coefficients in ∆op(J) are given by:

aop
1 =

√

g

2M1
ηop
1 bop

1 = −i

√

g

2M1

1

ηop
1

(

x+
1

x−
1

− 1

)

cop
1 = −

√

g

2M1

ηop
1

x+
1

dop
1 = i

√

g

2M1

x+
1

iηop
1

(

x−
1

x+
1

− 1

)

ηop
1 = ei

p1
4

√

ix−
1 − ix+

1

aop
2 =

√

g

2M2
ηop
2 bop

2 = −ieip1

√

g

2M2

1

ηop
2

(

x+
2

x−
2

− 1

)

cop
2 = −e−ip1

√

g

2M2

ηop
2

x+
2

dop
2 = i

√

g

2M2

x+
2

ηop
2

(

x−
2

x+
2

− 1

)

ηop
2 = ei

p2
4 ei

p1
2

√

ix−
2 − ix+

2

According to the logic of [9], the non-trivial braiding factors present in eq. (2.7) are all

hidden in the parameters of the four representations involved.

Using the above described differential representation, we have verified that both SAB

and SBB are invariant under Yangian symmetry by explicitly showing that it cocommutes

with the above specified coproduct for Yangian generators ĴA:

S ∆(ĴA) = ∆op(ĴA) S. (3.21)

Since we work in the evalutation representation, by (2.5), this indeed suffices. We omit the

details of the computation since they are not very illuminating.

Most importantly, Yangian symmetry fixes SBB uniquely up to phase factor without

usage of the Yang-Baxter equation. In [44] it was found that by requiring SBB to be invari-

ant under h fixes it up to two coefficients (one being the overall phase which we omit here):

SBB = SBB
f + q SBB

s . (3.22)

The coefficient was then determined by demanding SBB to satisfy the Yang-Baxter equa-

tion [44]. Here, by insisting that the S-matrix (3.22) respects Yangian symmetry we found

that this fixes q uniquely and that its value coincides with the one obtained in [44]. This

feature of the higher (Yangian) symmetries of the S-matrices as being a substitute for

the Yang-Baxter equation is not unexpected, as was explained in [9]. Our computation

confirms this point and simultaneously provides an independent check of the results by [44].

4. The near plane-wave limit and the classical r-matrix

We will now concentrate on the plane-wave limit of the bound state S-matrices. In this

limit it should agree with the universal classical r-matrix.

4.1 The universal classical r-matrix

In [39] a proposal for the classical r-matrix was made in terms of algebra generators in

the evaluation representation which in the classical limit coincides with the S-matrix found

in [5, 9].
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The r-matrix is completely given in terms of algebra generators and evaluation param-

eters u1, u2. Consider the following two-site operator

T12 = 2
(

R α
β ⊗ R β

α − L a
b ⊗ L b

a + G α
a ⊗ Q a

α − Q a
α ⊗ G α

a

)

. (4.1)

Next we introduce an operator B, which is subject to the following relations (in the classical

limit)

[Bm, (Qn)aβ ] = −(Qm+n)aβ + 2ǫβγǫad(Gm+n−1)
γ
d

[Bm, (Gn)αb] = (Gm+n)αb − 2ǫαγǫbd(Qm+n−1)
d
γ (4.2)

[Bm, (Ln)ab] = [Bm, (Rn)αβ] = [Bm, (Hn)] = 0.

The action of B on the fundamental representation should be equal to the action of T H−1.

Finally we would like to note that in the classical limit uC = uC† = H, just as in [39].

In terms of the operator B, the proposed classical r-matrix is [39]

r12 =
T12 − B ⊗ H − H ⊗ B

i(u1 − u2)
−

B ⊗ H

iu2
+

H ⊗ B

iu1
+

i

2
(u−1

2 − u−1
1 )H ⊗ H. (4.3)

We already know the realization of all the algebra generators on the bound state represen-

tations, except for B. The operator B is characterized through its commutation relations

with the generators of h. It also coincides with T H−1 on the fundamental representation

M = 1. An apparent guess would be to identify B with T H−1 on the higher representations

as well. One should note, however, that this choice is not unique. One can add to T H−1

the Casimir operator C without spoiling any of the commutation relations (4.2). On the

fundamental representation the Casimir vanishes and B coincides with T H−1. It appears

that the correct identification corresponds to taking B = Σ = T H−1 + CH−1. As we will

see, this will lead to a complete agreement with the bound state S-matrices in the near

plane-wave limit.

Thus, from now on, we will be working with the following r-matrix

r12 =
T12 − Σ ⊗ H − H ⊗ Σ

i(u1 − u2)
−

Σ ⊗ H

iu2
+

H ⊗ Σ

iu1
+

i

2
(u−1

2 − u−1
1 )H ⊗ H. (4.4)

The last term is proportional to the identity operator and is related to the phase factor of

the S-matrix. It was shown in [39] that r satisfies a number of properties expected from a

classical r-matrix like the classical Yang-Baxter equation.

Via (3.2) it is straightforward to put r into differential operator form since it is com-

pletely defined in terms of the algebra generators and central elements. Upon taking the

near plane-wave limit, discussed below we can then compare this operator to the S-matrix

understood as a differential operator.

Let us give the explicit form of r in terms of differential operators and discuss some of

its properties. We will consider operators acting on ΦK(w, θ)ΦM (u, ϑ). The operator T12

is simple since it is composed of two operators acting in different spaces. Writing it out is
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straightforward:

T12 = (−2wbua + waub)
∂2

∂wa∂ub
+ (2θβϑα − θαϑβ)

∂2

∂θα∂ϑβ

+2(a1d2 − b2c1)uaθα
∂2

∂wa∂ϑα
+ 2(a2d1 − b1c2)waϑα

∂2

∂ua∂θα

+2(a2c1 − b1d2)θαϑβǫabǫ
αβ ∂2

∂wa∂ub
+ 2(a1c2 − b2d1)waubǫ

abǫαβ
∂2

∂θα∂ϑβ
. (4.5)

The coefficients a, b, c, d are the semi-classical limits of a, b, c, d respectively. Note that the

information about the representation is completely encoded in the coefficients ai, bi, ci, di

as well as in the action of the differential operators on the “short” superfields.

Thus, the explicit form of r depends quite a lot on the choice of the bound state

representations. On the other hand, the bound state S-matrices are also quite different

from each other and hence the comparison between the two in the classical limit will

indeed be a non-trivial check of universality of the proposal.

4.2 The near plane-wave limit

To compare the proposed classical r-matrix to the bound state S-matrices, one first has to

define an appropriate limit in which the two can be compared. This limit is called the near

plane-wave limit. The observations and analysis done here are similar to those preformed

in [50]. Let us first discuss a suitable parameterization of x±
;M for a M -particle bound state

that allows taking the near plane-wave limit. We identify ~ = g−1 and take [51]:

x±
i;M = xi

(
√

1 −
(M/g)2

(xi −
1
xi

)2
±

iM/g

xi −
1
xi

)

. (4.6)

By identifying ~ = g−1, it is obvious from (2.6) that to find the classical r-matrix we should

expand around g = ∞ and work to order g−1.

In this parameterization, most of the parameters simplify greatly. For example, the

central charge H is given by

H = M
x2 + 1

x2 − 1
. (4.7)

Crossing symmetry also becomes transparent, since sending x±
i → 1

x±

i

reduces to

xi →
1

xi
. (4.8)

This simplifies checking crossing symmetry for the phases encountered later on.

4.3 The dressing phase

The phase factors obtained from fusion and crossing symmetry are given by (3.17). Let

us spell them out in the near plane-wave limit since they will come into play when taking
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the semi-classical limit. Consider two bound states of length Mi,Mj , described in the near

plane-wave limit by parameters xi, xj respectively.

First of all, the functions G(n) and the factors proportional to the momenta are easily

expanded around g → ∞ by using (4.6):

G(n) = 1 +
2ing−1

x1 + 1
x1

− x2 −
1
x2

+ O(g−2)

x+
j

x−
j

= 1 + 2ig−1Mj
xj

x2
j − 1

+ O
(

g−2
)

. (4.9)

To examine the dressing phase, we first introduce the conserved charges

qn(xi) =
i

n − 1

(

1

(x+
i )n−1

−
1

(x−
i )n−1

)

= 2g−1Mi
x2−n

i

x2
i − 1

+ O(g−2). (4.10)

The dressing phase is related to the conserved charges as follows

σ(xi, xj) = e
i
2
θ(xi,xj), (4.11)

where

θ12 = g
∞
∑

r=2

∞
∑

n=0

cr,r+1+2n (qr (x1) qr+1+2n (x2) − qr (x2) qr+1+2n (x1)) , (4.12)

with [51]

cr,s = δr+1,s − g−1 4

π

(r − 1)(s − 1)

(r + s − 2)(s − r)
+ O(g−2). (4.13)

Since qn ∼ g−1, we see that if we work to order g−1, it suffices to take cr,s = δr+1,s. Hence,

the dressing phase reduces to

θ12 = g

∞
∑

r=2

∞
∑

n=0

δn,0 (qr (x1) qr+1+2n (x2) − qr (x2) qr+1+2n (x1)) + O(g−2)

= g

∞
∑

r=2

(qr (x1) qr+1 (x2) − qr (x2) qr+1 (x1)) + O(g−2)

= 4MiMjg
−1

x2
i x

2
j(xi − xj)

(x2
i − 1)(x2

j − 1)

∞
∑

r=2

(

1

xixj

)r+1

+ O(g−2)

= 4MiMjg
−1 (xi − xj)

(x2
i − 1)(xixj − 1)(x2

j − 1)
+ O(g−2). (4.14)

From this expression it is easy to see that, at least to first order, the dressing phases of

bound states indeed behave as stated in [44].

For example, consider a two particle bound state, described by momenta p1, p2 related

by x−
1 = x+

2 and a fundamental excitation with momentum q. From fusion one obtains
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that the total phase is given by θtotal = θ(p1, q) + θ(p2, q). However, p1 and p2 are not

independent, but since θ ∼ g−1 we only have to solve the condition x−
1 = x+

2 up to zeroth

order, which is easily seen to give x1 = x2+O(g−1). But this means that the phases add and

we find θtotal = 2θ(p1, q) to first order, which indeed coincides with the found dressing phase.

To conclude, we give the total expression for the complete phase factors (3.17) in the

near plane-wave limit:

SAA
0 = 1 +

i(−1 + x1x2)(x
2
1 + x2

2)g
−1

(−1 + x2
1)(x1 − x2)(−1 + x2

2)
+ O(g−2)

SAB
0 = 1 +

2i(−1 + x1x2)(x
2
1 + x2

2)g
−1

(−1 + x2
1)(x1 − x2)(−1 + x2

2)
+ O(g−2)

SBB
0 = 1 +

4i(−1 + x1x2)(x
2
1 + x2

2)g
−1

(−1 + x2
1)(x1 − x2)(−1 + x2

2)
+ O(g−2). (4.15)

These phase factors will give a contribution proportional to the identity matrix. We write

S = 1 + g−1Sg→∞ + O(g−2). (4.16)

4.4 Comparison in the near plane-wave limit

Taking the limit g → ∞ for SAA, SAB and SBB, we can compare these matrices with the

proposed universal classical r-matrix (4.4). For SAA this has already been carried out

in [39] and complete agreement was found. This is also the case for the discussed bound

state S-matrices.

Now we are ready to compare the two operators by considering their action on all

basis elements. For all the cases we find a perfect agreement between the limiting values

of the S-matrices and the classical r-matrix evaluated in the corresponding bound state

representations

SAA
g→∞ = rAA, SAB

g→∞ = rAB, SBB
g→∞ = rBB . (4.17)

Actually, we can do a bit more by comparing r to the proposed phase [44] of the bound

state S-matrix SKM corresponding to the scattering of bound states of length K and M .

To this end, we recall that the bound state S-matrices SKM can be canonically normalized

by setting the coefficient a1, which corresponds to the projector on the irrep with maximal

su(2) spin, equal to unity:

SKM
can wK

1 uM
1 = wK

1 uM
1 . (4.18)

For the fully dressed S-matrix we, therefore, obtain

SKMwK
1 uM

1 = SKM
0 wK

1 uM
1 , (4.19)

where SKM
0 is a scalar factor given by [44]:

SKM
0 (x1, x2) = e

a
2
(p1ǫ2−ǫ1p2)

(

x−
1;K

x+
1;K

)
M
2
(

x+
2;M

x−
2;M

)
K
2

σ(x1, x2) ×

×
√

G(M − K)G(M + K)
K−1
∏

l=1

G(M − K + 2l). (4.20)
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In the near plane-wave limit, this becomes:

SKM
0 (x1, x2) = 1 + iKM

(x1x2 − 1)(x2
1 + x2

2)

(x2
1 − 1)(x1 − x2)(x2

2 − 1)
g−1

−a
KM (x1 − x2) (x1x2 − 1)

(

x2
1 − 1

) (

x2
2 − 1

) g−1 + O(g−2). (4.21)

The piece proportional to a can be realized as an operator

−a(u−1
1 − u−1

2 )H ⊗ H . (4.22)

On the other hand, assuming that the classical r-matrix is universal, we can easily compute

its action on the state wK
1 uM

1 . For a = 0 we find

(1 + g−1r)wK
1 uM

1 = SKM
0 (x1, x2)w

K
1 uM

1 . (4.23)

This means that the phase factor (4.20) derived in [44] is indeed compatible with r. With

our choice of B = Σ, the proposed r-matrix [39] exhibits perfect “universality” in the

sense that it is capable of reproducing the semiclassical limit of the quantum bound state

S-matrices SAA, SAB, SBB . In particular, it correctly reproduces the semi-classical limit of

the quantum phase SKM
0 obtained from the fusion procedure.

A last observation is that the form of the r-matrix is quite simple and contains at

most three derivatives, whereas an arbitrary S-matrix SMN of M,N bound states would be

build up out of more complicated expressions containing higher order differential operators.

This leads to the idea that one could use the proposed r-matrix to identify the non-trivial

components of the matrices SMN and hopefully gain new insights in their structure.

5. Conclusions

We have shown that the recently found bound state S-matrices [44], SAB and SBB are

invariant under Yangian symmetry. In particular, Yangian invariance fixes SBB completely

without appealing to the Yang-Baxter equation.

We have also compared the bound state S-matrices in the near plane-wave limit to the

proposed universal classical r-matrix of [39]. We found perfect agreement. It would be also

interesting to carry out an analogous investigation for the r-matrix proposed in [38].
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